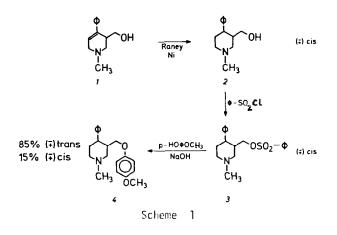
ON THE FORMATION OF THE 1-AZA-[3.1.1]-BICYCLOHEPTANE RING SYSTEM J.A. Christensen^{+*}, M. Engelstoft⁺, K. Schaumburg[§], H. Schou⁺ and F. Wätjen⁺ ⁺Research and Development Dept., Ferrosan A/S, 5, Sydmarken, DK-2860 Søborg, Denmark. [§]Dept. Chemical Physics, The H. C. Orsted Institute, 5, Universitetsparken, DK-2100 Copenhagen Ø, Denmark.


Summary: The previously unpublished bicyclic system 1-aza-[3.1.1]-bicycloheptane has been shown to exist as an unexpected intermediate in the synthesis of Femoxetine, a CNS active drug.¹

Femoxetine (4) is a new potent antidepressant drug developed in our laboratory⁺ during the last decade.¹ The synthesis of 4 is outlined in scheme 1.

4 exsists in four different stereoisomeric forms, where the (+)trans isomer is the active isomer. (\pm)trans refers to the configuration (3R^{*},4S^{*}), and the term (\pm)cis is used to denote configuration (3R^{*},4R^{*}).

In a preparation 172.4 mole (\pm) ? was dissolved in 175 ℓ toluene. 1 kg Raney nickel was added and the mixture hydrogenated overnight to yield 2 as a mixture of 85% (\pm) cis and 15% (\pm) trans isomer as determined by HPLC.

The Raney nickel was removed and to the stirred solution 228.6 mole $(C_2H_5)_3N$ was added followed by 230 mole benzenesulphonyl chloride added at such a rate that the temperature

was kept below 30° C. Both isomers of 2 are transformed with benzenesulphonyl chloride into the sulphoesters 3 with retained stereochemistry.

The mixture was left overnight, washed with 40 ℓ of water whereafter 175 ℓ 4-methylpentanol-2, 22 ℓ NaOH 50% and 254 moles of p-methoxy-phenol were added. This mixture was refluxed for 4 hours, subsequently cooled to 25°C and treated with water (100 ℓ + 50 ℓ + 30 ℓ). The aqueous layers were discarded and the organic phase containing 4 was isolated. Analysis of 4 by HPLC showed the composition to be 15% (±)cis and 85% (±)trans. It is therefore evident that the conversion of 3 to 4 does not proceed via the expected S_N2 mechanism.

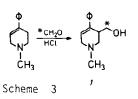
If pure (\pm) trans sulphoester(3) is used as the starting material in the step 3 ± 4 pure (\pm) trans Femoxetine (4) is the product, indicating in this case a clean S_N^2 reaction. This leads us to propose that the (\pm) cis isomer of 3 under the conditions described reacts via the intermediate l-azonia-l-methyl-4-phenyl-[3.1.1]bicycloheptane cation (5) shown in scheme 2.

In order to substantiate the proposal a sample of 13 C labelled (±)cis sulphoester 3 was prepared² (scheme 3) and the step 3 \rightarrow 4 was carried out as above. The enrichment in 3 was 3% determined by 13 C NMR in 1 and 2.

(3)

(=) trans

OCH-


 $X = CH_2OSO_2 - \Phi$

 $Y = CH_2O$

After the completion of the reaction and isolation of 4 the enrichment in 4 is found exclusively in the C(2) position of the piperidine ring. Care was taken to ensure accurate measurements of signal intensities by inserting an appropriate delay between successive accumulations.^{3,4}

The cis-trans ratio observed in the reaction $3 \rightarrow 4$ can be envisaged as a steric effect in the bicyclic intermediate. The attack will occur from the less crowded side, opposite to the phenyl group leading to a trans configuration in 4.

A few similar observations have been published for the azetidine structure 5,6 ,

intermediate. the less crowdmenyl group leadons have been $e structure^{5,6}$, but only for cases where the azetidinium salts have been part of larger condensed ring systems like tropane⁶ and lupinine⁵. We find the observation in the present work of the highly strained bicyclic azeti-

(4)

(;) trans

observation in the present work of the highly strained bicyclic azetidine ring surprising since it is formed in presence of a strong nucleophilic agent which normally favours the S_N^2 reaction pathway.

Acknowledgements

The authors acknowledge the support of the Danish Science Research Council placing the Bruker 270 MHz spectrometer at our disposal for the present work.

References

1. Brit Pat. No. 1422263 21/1-1976.

2. C.A. 51, 2880f (1957).

3. ¹³C spectra were recorded in FT Mode using Bruker 270 HX spectrometer operating with quadrature detection at 67.889 MHz. The samples were prepared as 10% w/v in CDCl₃ and 10 mm sample tubes were used. Spectra were accumulated with 1000 transients in 32 K data points with a spectral width of 17000 Hz with sample temperature 305 K. The antigated mode⁵ was used with a pulsewidth a 7 µs (50° flip angle) and a delay between accumulations of 20 s. The (:)trans configuration of $\underline{4}$ gave the following data in ppm: C₂: 59.56 (t); C₃: 41.75 (d); C₄: 44.18 (d); C₅: 34.23 (t); C₆: 56.13 (t); C₇: 143.93; C₈,C₁₂: 127.36; C₉,C₁₁: 128.46; C₁₀: 126.37 C₁₃: 65.23 (t); C₁₄: 152.89; C₁₅C₁₉: 114.29; C₁₆C₁₈: 115.16; C₁₇: 153.46; C₂₀: 55.53 (q); C₂₁: 46.43 (q).

4. Fukushima, E. and Roeder, S.B.W., "Experimental Pulse NMR" Addison-Wesley Publishing Corp. (1981).

- 5. Fodor, G., J. Am. Chem. Soc., 88, 1040-1043 (1966).
- 6. Fodor, G., Mandava, N. and Weisz, I., Tetrahedron 2:, 2357-2366 (1963).

(Received in UK 22 September 1983)